@article{Tsapalov_Kovler_2022, title={Annual monitoring of soil radon behavior and entry into building}, volume={3}, url={https://radonjournal.net/index.php/radon/article/view/7630}, DOI={10.35815/radon.v3.7630}, abstractNote={<p><span style="color: #000000; font-family: ’Times New Roman’; font-size: medium; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;">A simple experimental scheme is proposed to study the concentration behavior and mechanism of soil radon transport from beneath a building foundation. In addition to the results of the annual monitoring of soil radon concentration and environmental factors, the calculated results of the annual continuous monitoring of the soil radon entry rate into experimental room with high levels of indoor radon are presented. This room is located in the basement of one of the buildings in Haifa, Israel. The correlation between radon behavior and environmental factors is discussed. It is found that the soil radon concentration beneath the building is maximum in the winter season due to very heavy rains. There is an absence of soil radon entry by only convection mechanism into the experimental room for the summer and autumn seasons; however, the indoor radon concentration remains high (about 500 Bq m</span><sup style="color: #000000; font-family: ’Times New Roman’; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;">-3</sup><span style="color: #000000; font-family: ’Times New Roman’; font-size: medium; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;">) due to diffusion of soil radon. A regular soil radon entry into the experimental room by convection is observed in the winter and spring seasons with a maximum, approximately at the beginning of the spring season, and therefore, the indoor radon concentration is twice as high as in the summer and autumn seasons. The obtained results indicate that not only convective process but also diffusion of soil radon plays a significant role in the formation of indoor radon.</span></p&gt;}, journal={Journal of the European Radon Association}, author={Tsapalov Andrey and Kovler Konstantin}, year={2022}, month={Mar.} }