Prediction of the radon priority areas in the Slovak Republic and its experimental verification

  • Alžbeta Brandýsová Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina F-1, 842 48 Bratislava, Slovak Republic
  • Karol Holý Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovak Republic
  • Martin Bulko Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovak Republic
  • Monika Müllerová Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovak Republic
  • Terézia Eckertová Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovak Republic
  • Jozef Masarik Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovak Republic
Keywords: Radon, 222Rn, radon potential map, radon activity concentration, indoor radon levels, reference level, standardized mortality

Abstract

Background: The identification of the areas with increased indoor radon levels, generally referred to as “radon priority areas”, is an internationally recognized issue. Many scientific studies propose methods for locating such areas using measured soil characteristics.

Objective: To utilize a modified Neznal radon potential classification for mapping radon potential across the Slovak Republic and experimentally verifying the predictions of radon priority areas.

Methods: The study applied a modified version of the Neznal radon potential classification, using measurements of soil air radon concentration and soil gas permeability, to develop a radon potential map for the Slovak Republic. Municipalities with high radon potential were primarily selected for the experimental verification of radon priority area predictions. The verification process involved comparing measured indoor radon activity concentrations against predicted values, which were derived from a previous study correlating averaged indoor radon activity concentrations with averaged Neznal radon potential for selected municipalities.

Results: The investigation revealed an approximately linear relationship between the measured indoor radon activity concentrations and their predicted values, with a correlation coefficient R2 = 0.43. Notably, in one municipality predicted to have medium-high radon potential, indoor radon concentrations exceeded the reference level of 300 Bq.m-3 even in buildings constructed after 2008, highlighting the significant influence of soil radon content on indoor levels despite stricter building material standards. The analysis of radon priority areas in relation to bronchial and lung cancer mortality data across various districts in Slovakia did not show statistically significant results.

Conclusion: The proposed method of predicting radon risk areas is important for radiation protection of the population against high effective doses of radon and can contribute to the successful implementation of the National Radon Action Plan of the Slovak Republic.

Downloads

Download data is not yet available.

References


1.
Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, et al. Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. BMJ 2005; 330(7485): 223. doi: 10.1136/bmj.38308.477650.63


2.
Collection of Laws of the Slovak Republic 87/2018. Act 87 of March 13 2018: On radiation protection and on the amendment and supplementation of certain laws. Bratislava: Ministry of Justice of the Slovak Republic; 2018.


3.
European Commission. Council Directive 2013/59 Euratom of 5 December 2013 laying down Basic Safety Standards for Protection against the Dangers Arising from Exposure to Ionising Radiat Off J Eur Union L13 2014; 13(57): 1–73.


4.
Bossew P. Determination of radon prone areas by optimized binary classification. J Environ Radioact 2014; 129: 121–32. doi: 10.1016/j.jenvrad.2013.12.015


5.
Bossew, P. Radon priority areas – definition, estimation and uncertainty. Nucl Techn Radiat Prot 2018; 33(3): 286–92. doi: 10.2298/NTRP180515011B


6.
Petermann E, Bossew P, Hoffmann B. Radon hazard vs. radon risk-on the effectiveness of radon priority areas. J Environ Radioact 2022; 244: 106833. doi: 10.1016/j.jenvrad.2022.106833


7.
International Atomic Energy Agency (IAEA). Protection of the public against exposure indoors due to natural sources of radiation. 2012, p. 112. Available from: https://www-pub.iaea.org/MTCD/publications/PDF/Pub1651Web-62473672.pdf [cited 17 October 2023].


8.
International commission on Radiological Protection (ICRP). Publication 65. Protection against Radon 222 at home and at work. Ann ICRP 1993; 23: 1–45.


9.
Bossew, P. Mapping the geogenic radon potential and estimation of radon prone areas in Germany. Radiat Emerg Med 2015; 4(2): 13–20.


10.
World Health Organization. WHO handbook on indoor radon: a public health perspective. Geneva: WHO; 2009. Available from: http://apps.who.int/iris/bitstream/handle/10665/44149/9789241547673_eng.pdf?sequence=1 [cited 17 October 2023].


11.
Friedmann H. Final results of the Austrian radon project. Health Phys 2005; 89(4): 339–48. doi: 10.1097/01.HP.0000167228.18113.27


12.
Sarra A, Nissi E, Palermi S. Residential radon concentration in the Abruzzo region (Italy): a different perspective for identifying radon prone areas. Environ Ecol Stat 2012;19: 219–47. doi: 10.1007/s10651-011-0183-y


13.
Kropat G, Bochud F, Jaboyedoff M, Laedermann J P, Murith C, Palacios M et al. Major influencing factors of indoor radon concentrations in Switzerland. J Environ Radioact 2014; 129: 7–22. doi: 10.1016/j.jenvrad.2013.11.010


14.
Dowdall A, Murphy P, Pollard D, Fenton D. Update of Ireland’s national average indoor radon concentration – application of a new survey protocol. J Environ Radioact 2017; 169(170): 1–8. doi: 10.1016/j.jenvrad.2016.11.034


15.
Sainz Fernández C, Quindós Poncela LS, Fernández Villar A, Fuente Merino I, Gutierrez-Villanueva J L, Celaya González S, et al. Spanish experience on the design of radon surveys based on the use of geogenic information. J Environ Radioact 2017; 166: 390–7. doi: 10.1016/j.jenvrad.2016.07.007


16.
Vukotic P, Antovic N, Djurovic A, Zekic R, Svrkota N, Andjelic T, et al. Radon survey in Montenegro – a base to set national radon reference and “urgent action” level. J Environ Radioact 2018; 196: 232–9. doi: 10.1016/j.jenvrad.2018.02.009


17.
Tollefsen T, Cinelli G, Bossew P, Gruber V, De Cort M. From the European indoor radon map towards an atlas of natural radiation. Radiat Prot Dosim 2014; 162(1–2): 129–34. doi: 10.1093/rpd/ncu244


18.
Elío J, Crowley Q, Scanlon R, Hodgson J, Long S. Logistic regression model for detecting radon prone areas in Ireland. Sci Tot Environ 2017; 599: 1317–29. doi: 10.1016/j.scitotenv.2017.05.071


19.
Friedmann H, Baumgartner A, Bernreiter M, Gräser J, Gruber V, Kabrt F, et al. Indoor radon, geogenic radon surrogates and geology–Investigations on their correlation. J Environ Radioact 2017; 166: 382–9. doi: 10.1016/j.jenvrad.2016.04.028


20.
Bossew P, Cinelli G, Ciotoli G, Crowley Q G, De Cort M, Elío Medina J, et al. Development of a geogenic radon hazard index—concept, history, experiences. Int J Environ Res and Public Health 2020; 17(11): 4134. doi: 10.3390/ijerph17114134


21.
Mancini S, Vilnitis M, Guida M. A novel strategy for the assessment of radon risk based on indicators. Int J Environ Res Public Health 2021; 18: 1–13. doi: 10.3390/ijerph18158089


22.
Petermann E, Meyer H, Nussbaum M, Bossew P. Mapping the geogenic radon potential for Germany by machine learning. Sci Tot Environ 2021; 754: 142291. doi: 10.1016/j.scitotenv.2020.142291


23.
Giustini F, Ruggiero L, Sciarra A, Beaubien SE, Graziani S, Galli G, et al. Radon hazard in central Italy: comparison among areas with different geogenic radon potential. Int J Environ Res Public Health 2022; 19(2): 666. doi: 10.3390/ijerph19020666


24.
Gruber V, Baumann S, Alber O, Laubichler C, Bossew P, Petermann E, et al. Comparison of radon mapping methods for the delineation of radon priority areas-an exercise. J Eur Radon Assoc 2021; 2: 1–14. doi: 10.35815/radon.v2.5755


25.
Neznal M, Neznal M, Matolin M, Barnet I, Miksova J, The new method for assessing the Radon risk of building sites Prague: Czech Geol Survey Spec Pap CGS; 2004.


26.
Map Server of the State Geological Institute of Dionýz Štúr. Available from: http://www.geology.sk/new/sk/sub/ms/zoz_apl [cited 17 October 2023].


27.
Brandýsová A, Bulko M, Holý K, Müllerová M, Masarik J. Radon-prone areas in Slovakia predicted by rescaled radon potential maps. Radiat Prot Dosimetry 2022; 198: 759–65. doi: 10.1093/rpd/ncac131


28.
Bulko M, Holý K, Brandýsová A, Müllerová M, Masarik J. Study of the possibility of using radon potential maps for identification of areas with high indoor radon concentration. J Radioanal Nucl Chem 2021; 328: 651–7. doi: 10.1007/s10967-021-07673-4


29.
Golden Software Support. Scale Late/Lon maps correctly in Surfer. Available from: https://support.goldensoftware.com/hc/en-us/articles/226661488-Scale-Lat-Lon-maps-correctly-in-Surfer [cited 17 October 2023].


30.
SÚBJCHO. RamaRn – radon passive detector (in Czech). Available from: https://www.sujchbo.cz/pracoviste-ustavu/odbor-jaderne-ochrany/specificke-cinnosti-odboru/ramarn-pasivni-detektory-radonu/ [cited 17 October 2023].


31.
RADON v.o.s. Radon detector RM-2. Available from: http://www.radon.eu/rm2.html [cited 17 October 2023].


32.
RADON v.o.s. Equipment for in situ permeability measurements RADON – JOK. Available from: http://www.radon.eu/jok.html [cited 17 January 2024].


33.
ECIS. European Cancer Information System (online). Available from: https://ecis,jrc,ec,europa,eu/info/glossary,html [cited 17 October 2023].


34.
NCHI. National Center for Healthcare Information (in Slovak). Available from: https://iszi,nczisk,sk/nor,sr/uvod [cited 17 October 2023].


35.
Moravcík A. Radon in the air of family houses, its variation and measurement methods. (in Slovak). Doctoral thesis. Bratislava: FMPI CU; 2015, 126 p.


36.
Brenner DJ, Doll R, Goodhead DT, Hall EJ, Land CE, Little JB, et al. Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc Natl Acad Sci 2003; 100(24): 13761–66. doi: 10.1073/pnas.2235592100
Published
2024-04-18
How to Cite
Brandýsová A., Holý K., Bulko M., Müllerová M., Eckertová T., & Masarik J. (2024). Prediction of the radon priority areas in the Slovak Republic and its experimental verification. Journal of the European Radon Association, 5. https://doi.org/10.35815/radon.v5.10375
Section
Original Research Articles