A representative national indoor radon survey in Germany

  • Joachim Kemski Sachverständigenbüro Dr. Kemski, Bonn, Germany
  • Valeria Gruber Austrian Agency for Health and Food Safety (AGES), Department for Radon and Radioecology, Linz, Austria
  • Sebastian Baumann Austrian Agency for Health and Food Safety (AGES), Department for Radon and Radioecology, Linz, Austria
  • Oliver Alber Austrian Agency for Health and Food Safety (AGES), Department of Statistics and Analytical Epidemiology, Graz, Austria
Keywords: radon exposure, geology, mailing, radon map, building characteristics, representativity, radiation protection

Abstract

Background: Radon is a carcinogenic indoor pollutant, which can cause lung cancer. Therefore, radon protection was included in national legislations and radon protection activities are carried out in Europe.

Objective: In Germany a nationwide survey to measure levels of indoor radon concentration in residential buildings was conducted.

Design: The survey was designed to represent the population. The measurements were taken for 6,000 households all over Germany for 12 months, with two measurements in each household with track etch detectors. The distribution follows administrative units (401 districts). In a first step, participants were acquired through a nationwide mailing with randomly chosen addresses. In a second step, more participants were brought in by specific advertising campaigns in local media.

Results: Results of approx. 6,500 households (= approx. 13,000 individual readings) were included in the study. The intention of a population-representative survey could not fully be accomplished, but the areal distribution of the participating households corresponded satisfactorily to the intended district-based distribution. The radon concentrations follow a log-normal distribution. The Germany-wide median is 44 Bq/m3, the geometric mean 49 Bq/m3, and the arithmetic mean is higher at 77 Bq/m3.

Discussion: The German reference level of 300 Bq/m3 is exceeded in about 3.5% of all measurements. Higher values, mainly due to geology, occur in the eastern and southern part of Germany. Known dependencies on building characteristics are confirmed, such as increased values in older buildings or on lower floors.

Conclusions: This survey can serve as a profound data basis for following radon studies in Germany and for an estimation of exposure of the population due to radon.

Downloads

Download data is not yet available.

References


1.
World Health Organisation (WHO). Health effects of radon. In: Zeeb H, Shannoun F, eds. WHO handbook on indoor radon: a public health perspective. Geneva: World Health Organisation (WHO); 2009, pp. 3–20.


2.
Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, et al. Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. BMJ 2005; 330(7485): 223. doi: 10.1136/bmj.38308.477650.63


3.
EC (Council of the European Union (EU)). Council directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Off J Eur Union L 2014; 13(57): 1–73.


4.
Radiation Protection Act. Act on the Protection Against the Harmful Effect of Ionising Radiation of 27 June 2017, Bundesgesetzblatt (Federal Law Gazette), BGBl. I S. 1966, last Amendment of 3 January 2022, Bundesgesetzblatt (Federal Law Gazette), BGBl. I S. 15. 2017.


5.
Bundesamt für Strahlenschutz (BfS). Map ‘Radon in the soil air in Germany’. 2023. Available from: https://www.bfs.de/EN/topics/ion/environment/radon/maps/soil-air.html [cited 25 November 2023].


6.
Pantelić G, Čeliković I, Živanović M, Vukanac I, Nikolić JK, Cinelli G, et al. Qualitative overview of indoor radon surveys in Europe. J Environ Radioact 2019; 204: 163–74. doi: 10.1016/j.jenvrad.2019.04.010


7.
Fennell SG, Mackin GM, Madden JS, McGarry AT, Duffy JT, O’Colmáin M, et al. Radon in dwellings the Irish National Radon Survey. RPII-02/1. Dublin: Radiological Protection Institute of Ireland; 2002, 47 p.


8.
Dowdall A, Murphy P, Pollard D, Fenton D. Update of Ireland’s national average indoor radon concentration – application of a new survey protocol. J Environ Radioact 2017; 169–170: 1–8. doi: 10.1016/j.jenvrad.2016.11.034


9.
Gruber V, Baumann S, Wurm G, Ringer W, Alber O. The new Austrian indoor radon survey (ÖNRAP 2, 2013–2019): design, implementation, results. J Environ Radioact 2021; 233: 106618. doi: 10.1016/j.jenvrad.2021.106618


10.
McLaughlin JP, Wasiolek P. Radon levels in Irish dwellings. Radiat Prot Dosimetry 1988; 24(1–4): 383–6. doi: 10.1093/oxfordjournals.rpd.a080308


11.
Bochicchio F, Campos Venuti G, Nuccetelli C, Piermattei S, Risica S, Tommasino L, et al. Results of the representative Italian national survey of radon indoors. Health Phys 1996; 71(5): 741–8. doi: 10.1097/00004032-199611000-00016


12.
Friedmann H. Final results of the Austrian radon project. Health Phys 2005; 89(4): 339–48. doi: 10.1097/01.hp.0000167228.18113.27


13.
Statistisches Bundesamt. Daten aus dem Gemeindeverzeichnis Kreisfreie Städte und Landkreise nach Fläche, Bevölkerung und Bevölkerungsdichte. Gebietsstand: 31.12.2017. Wiesbaden: Statistisches Bundesamt; 2018.


14.
DIN ISO 11665-4. Integrierendes Messverfahren zur Bestimmung des Durchschnittswertes der Aktivitätskonzentration mittels passiver Probenahme und zeitversetzter Auswertung. Berlin. 2013.


15.
BKG (Bundesamt für Kartographie and Geodäsie). Data from: Georeferenzierte Adressdaten (GA). Frankfurt am Main: BKG; 2020.


16.
Bundesanstalt für Geowissenschaften und Rohstoffe. Hannover: Geologische Übersichtskarte der Bundesrepublik Deutschland 1: 250 000 (GÜK250); 2019.


17.
Bundesamt für Strahlenschutz (BfS). Übersicht Radon-Vorsorgegebiete in Deutschland (Status 15.6.2021). 2021. Available from: https://www.bfs.de/DE/themen/ion/umwelt/radon/karten/vorsorgegebiete.html [cited 25 November 2023].


18.
Kemski J, Gruber V, Baumann S, Alber O. Ermittlung der aktuellen Verteilung der Radonkonzentration in deutschen Wohnungen (Abschlussbericht zum Forschungsvorhaben 3618S12261). 2024; 261 p.


19.
Statistisches Bundesamt. Ergebnisse des Zensus 2011. 2023. Available from: https://www.zensus2011.de/DE/Home/Aktuelles/DemografischeGrunddaten.html?nn=559100 [cited 20 October 2023].


20.
Bossew P, Dubois G, Tollefsen T. Investigations on indoor radon in Austria, part 2: geological classes as categorical external drift for spatial modelling of the radon potential. J Environ Radioact 2008; 99(1): 81–97. doi: 10.1016/j.jenvrad.2007.06.013


21.
Tondeur F, Cinelli G, Dehandschutter B. Homogenity of geological units with respect to the radon risk in the Walloon region of Belgium. J Environ Radioact 2014; 136: 140–51. doi: 10.1016/j.jenvrad.2014.05.015


22.
Barnet I, Pacherova P, Preusse W, Stec B. Cross-border radon index map 1:100,000 Lausitz – Jizera – Karkonosze – Region (northern part of the Bohemian Massif). J Environ Radioact 2010; 101(10): 809–12. doi: 10.1016/j.jenvrad.2009.11.009


23.
Andersen CE, Nielsen O-R, Andersen HP, Lind M, Gravesen P, Thomsen BL, et al. Prediction of 222Rn in Danish dwellings using geology and house construction information from central databases. Radiat Prot Dosimetry 2007; 123(1): 83–94. doi: 10.1093/rpd/ncl082


24.
Miles JCH, Appleton JD. Mapping variation in radon potential both between and within geological units. J Radiol Prot 2005; 25: 257–76. doi: 10.1088/0952-4746/25/3/003


25.
Kemski J, Siehl A, Stegemann R, Valdivia-Manchego M. Mapping the geogenic radon potential in Germany. Sci Total Environ 2001; 272(1–3): 217–30. doi: 10.1016/S0048-9697(01)00696-9


26.
Kemski J, Klingel R, Siehl A, Stegemann R. Radon transfer from ground to houses and prediction of indoor radon in Germany based on geological information. Radioact Environ 2005; 7: 820–32. doi: 10.1016/S1569-4860(04)07103-7


27.
Kemski J, Klingel R, Siehl A, Valdivia-Manchego M. From radon hazard to risk prediction-based on geological maps, soil gas and indoor measurements in Germany. Environ Geol 2009; 56: 1269–79. doi: 10.1007/s00254-008-1226-z


28.
Sundal AV, Henriksen H, Soldal O, Strand T. The influence of geological factors on indoor radon concentrations in Norway. Sci Total Environ 2004; 328(1–3): 41–53. doi: 10.1016/j.scitotenv.2004.02.011


29.
Kropat G, Bochud F, Jaboyedoff M, Laedermann JP, Murith C, Palacios M, et al. Major influencing factors of indoor radon concentrations in Switzerland. J Environ Radioact 2014; 129: 7–22. doi: 10.1016/j.jenvrad.2013.11.010


30.
Hahn EJ, Gokuna Y, Andrews WM, Jr, Overfield BL, Robertson H, Wiggins A, et al. Radon potential, geologic formations, and lung cancer risk. Prevent Med Rep 2015; 2: 342–6. doi: 10.1016/j.pmedr.2015.04.009


31.
Åkerblom G, Andersson P, Clavensjö B. Soil gas radon – a source for indoor radon daughters. Radiat Prot Dosimetry 1984; 7(1–4): 49–54. doi: 10.1093/oxfordjournals.rpd.a082961


32.
Fertl WH, Chilingar GV. Total organic carbon content determined from well logs. SPE Form Eval 1988; 3(2): 407–19. doi: 10.2118/15612-pa


33.
Harrell JA, Belsito ME, Kumar A. Radon hazards associated with outcrops of Ohio Shale in Ohio. Environ Geol Water Sci 1991; 18: 17–26. doi: 10.1007/BF01704574


34.
Fello N, Lüning S, Štorch P, Redfern J. Identification of early Llandovery (Silurian) anoxic palaeo-depressions at the western margin of the Murzuq Basin (southwest Libya), based on gamma-ray spectrometry in surface exposures. GeoArabia 2006; 11(3): 101–18. doi: 10.2113/geoarabia1103101


35.
Drolet J-P, Martel R, Poulin P, Dessau J-C, Lavoie D, Parent M, et al. An approach to define potential radon emission level maps using indoor radon concentration measurements and radio-geochemical data positive proportion relationships. J Environ Radioact 2013; 124: 57–67. doi: 10.1016/j.jenvrad.2013.04.006


36.
Mousavi Aghdam M, Crowley Q, Rocha C, Dentoni V, DaPelo S, Long S, et al. Study of natural radioactivity levels and radon/thoron release potential of bedrock and soil in Southeastern Ireland. Int J Environ Res Public Health 2021; 18: 2709. doi: 10.3390/ijerph18052709


37.
Collignan B, Le Ponner E, Mandin C. Relationships between indoor radon concentrations, thermal retrofit and dwelling characteristics. J Environ Radioact 2016; 165: 124–30. doi: 10.1016/j.jenvrad.2016.09.013


38.
Smetsers RCGM, Blaauboer RO, Dekkers SAJ. Ingredients for a Dutch radon action plan, based on a national survey in more than 2500 dwellings. J Environ Radioact 2016; 165: 93–102. doi: 10.1016/j.jenvrad.2016.09.008


39.
Yang S, Goyette Pernot J, Hager Jörin C, Niculita-Hirzel H, Perret V, Licina D. Radon investigation in 650 energy efficient dwellings in western Switzerland: impact of energy renovation and building characteristics. Atmosphere 2019; 10(12): 777. doi: 10.3390/atmos10120777


40.
Bochicchio F, Campos-Venuti G, Piermattei S, Nuccetelli C, Risica S, Tommasino L, et al. Annual average and seasonal variations of residential radon concentration for all the Italian regions. Radiat Measure 2005; 40(2–6): 686–94. doi: 10.1016/j.radmeas.2004.12.023


41.
Demoury C, Ielsch G, Hemon D, Laurent O, Laurier D, Clavel J, et al. A statistical evaluation of the influence of housing characteristics and geogenic radon potential on indoor radon concentrations in France. J Environ Radioact 2013; 126: 216–25. doi: 10.1016/j.jenvrad.2013.08.006


42.
Alber O, Laubichler C, Baumann S, Gruber V, Kuchling S. Modeling and predicting mean indoor radon concentrations in Austria by generalized additive mixed models. Stoch Environ Res Risk Assess 2023; 37: 3435–49. doi: 10.1007/s00477-023-02457-6


43.
Collignan B, Powaga E. Impact of ventilation systems and energy savings in a building on the mechanisms governing the indoor radon activity concentration. J Environ Radioact 2019; 196: 268–73. doi: 10.1016/j.jenvrad.2017.11.023


44.
Jiránek M, Kačmaříková V. Dealing with the increased radon concentration in thermally retrofitted buildings. Radiat Prot Dosimetry 2014; 160(1–3): 43–7. doi: 10.1093/rpd/ncu104


45.
Pampuri L, Caputo P, Valsangiacomo C. Effects if buildings’ refurbishment on indoor air quality. Results of a wide survey in radon concentrations before and after energy retrofit interventions. Sustain Cities Soc 2018; 42: 100–6. doi: 10.1016/j.scs.2018.07.007


46.
Pressyanov D, Dimitrov D, Dimitrova I. Energy-efficient reconstructions and indoor radon: the impact assessed by CDs/DVDs. J Environ Radioact 2015; 143: 76–9. doi: 10.1016/j.jenvrad.2015.02.016


47.
Bundesamt für Strahlenschutz (BfS). Map ‘radon in dwellings in Germany’. 2023. Available from: https://www.bfs.de/EN/topics/ion/environment/radon/maps/indoor.html [cited 12 December 2023].
Published
2024-10-10
How to Cite
Kemski J., Gruber V., Baumann S., & Alber O. (2024). A representative national indoor radon survey in Germany. Journal of the European Radon Association, 5. https://doi.org/10.35815/radon.v5.10435
Section
Original Research Articles