Radon levels in three fish rearing buildings at Cleghorn Springs State Fish Hatchery, Rapid City, South Dakota, USA

  • Alexis L. Gerber South Dakota Department of Game, Fish and Parks, McNenny State Fish Hatchery, Spearfish, SD, USA
  • Shaylee Martling South Dakota Department of Game, Fish and Parks, McNenny State Fish Hatchery, Spearfish, SD, USA
  • Jill M. Voorhees South Dakota Department of Game, Fish and Parks, McNenny State Fish Hatchery, Spearfish, SD, USA
  • Hope Marchant South Dakota Department of Game, Fish and Parks, McNenny State Fish Hatchery, Spearfish, SD, USA
  • Michael E. Barnes South Dakota Department of Game, Fish and Parks, McNenny State Fish Hatchery, Spearfish, SD, USA
Keywords: radon, fish hatchery, aquaculture, rearing

Abstract

Fish hatchery workers may be exposed to potentially health-threatening radon gas liberated from ground water used during fish rearing. This study surveyed the radon levels in three fish rearing buildings (small tankroom, tankroom, and rearing pavilion) at Cleghorn Springs State Fish Hatchery, Rapid City, South Dakota, USA. Overall radon values ranged from below the detection limit in all three buildings to a high of 2,317.68 Bq/m3 (62.64 pCi/L) in the tankroom. The pavilion had the lowest mean ± SE value of 56.57 ± 40.71 Bq/m3 (1.23 ± 0.11 pCi/L), while the highest mean value of 796.21 ± 54.61 Bq/m3 (23.67 ± 1.34 pCi/L) was in the small tankroom. Maximum radon levels were 1,231.36, 2,317.68, and 365.93 Bq/m3 (33.28, 62.64, and 9.89 pCi/L) in the small tankroom, tankroom, and pavilion, respectively. Radon levels were significantly correlated with the number of tanks receiving water in both the small tankroom and tankroom, but no such correlation was observed in the relatively open-air pavilion. Even though the water at the hatchery was aerated outside, additional aeration from rearing tank spray bars inside the enclosed small tankroom and tankroom resulted in relatively high radon levels.

Downloads

Download data is not yet available.

References


1.
Dwyer W, Orr W. Technical notes: removal of radon gas liberated by aeration columns in fish hatcheries. Prog Fish Cult 1992; 54(1): 57–8. doi: 10.1577/1548-8640(1992)054<0057:TNRORG>2.3.CO;2


2.
Kitto ME, Kunz CO, McNulty CA, Covert S, Kuhland M. Radon measurements and mitigation at a fish hatchery. Health Phys 1998; 74(4): 451–5. doi: 10.1097/00004032-199804000-00006


3.
World Health Organization. WHO handbook on indoor radon: a public health perspective. World Health Organization; Geneva, Switzerland, 2009.


4.
Skeppstrom K, Olofsson B. Uranium and radon in groundwater. Eur Water 2007; 17(18): 51–62.


5.
Nayak T, Basak S, Deb A, Dhal PK. A systematic review on groundwater radon distribution with human health consequences and probable mitigation strategy. J Environ Radioact 2022; 247: 1–9. doi: 10.1016/j.jenvrad.2022.106852


6.
Ghernaout D. Aeration process for removing radon from drinking water – a review. Appl Eng 2019; 3(1): 32–45. doi: 10.11648/j.ae.20190301.15


7.
Al-Zoughool M, Krewski D. Health effects of radon: a review of the literature. Int J Radiat Biol 2009; 85(1): 57–69. doi: 10.1080/09553000802635054


8.
Lewis RK. An investigation of radon occurrence in Pennsylvania fish and boat commission fish culture stations. International Radon Symposium, 2001, Daytona Beach, Florida, USA pp. 52–67.


9.
Krewski D, Lubin JH, Zielinski JM, Alavanja M, Catalan VS, Field RW, et al. Residential radon and risk of lung cancer: a combined analysis of 7 North American case-control studies. Epidemiology 2005; 16(2): 137–45. doi: 10.1097/01.ede.0000152522.80261.e3


10.
Gordon K, Terry PD, Lui X, Harris T, Vowell D, Yard B, et al. Radon in schools: a brief review of state laws and regulations in the United States. Int J Environ Res Public Health 2018; 15: 2149. doi: 10.3390/ijerph15102149


11.
Kang J, Seo S, Jin YW. Health effects of radon exposure. Yonsei Med J 2019; 60(7): 597–603. doi: 10.3349/ymj.2019.60.7.597


12.
Radford EP. Potential health effects of indoor radon exposure. Environ Health Perspect 1985; 62: 281–7. doi: 10.1289/ehp.8562281


13.
Barros-Dios JM, Ruano-Ravina A, Perez-Rios M, Castro-Bernardez M, Abal-Arca J, Tojo-Castro M. Residential radon exposure, historical types, and lung cancer risk: a case-control study in Galicia, Spain. Cancer Epidemiol Biomarkers Prevent 2012; 21(6): 951–8. doi: 10.1158/1055-9965.EPI-12-0146-T


14.
USEPA. Radon. United State Environmental Protection Agency; 2023. Available from: https://www.epa.gov/radon [cited 1 November 2023].


15.
Lantz PM, Mendez D, Philbert MA. Radon, smoking, and lung cancer: the need the refocus radon control policy. Am J Public Health 2013; 103(3): 443–47. doi: 10.2105/AJPH.2012.300926


16.
ATSDR. Radon toxicity: standards and regulations. Agency for Toxic Substances and Disease Registry; 2023. Available from: https://www.atsdr.cdc.gov/csem/radon/standards.html#:~:text=The%20EPA%20environmental%20radon%20level,are%20reducible%20(EPA%202009c) [cited 1 November 2023].


17.
European Commission. Council directive 2013/59/Euratom. Off J Eur Union 2014; 57: L13.


18.
Venoso G, Iacoponi A, Pratesi G, Guazzini M, Boccini L, Corbani E, et al. Impact of temporal variability of radon concentration in workplaces on the actual radon exposure during working hours. Sci Rep 2021; 11(1): 16984. doi: 10.1038/s41598-021-96207-9


19.
Flexser S, Wollenberg HA, Smith AR. Radon in groundwater of the Long Valley Caldera, California. In: National water well association, radon in ground water. 1st ed. CRC Press; 1987, Boca Raton, Florida, USA, pp. 131–49.


20.
Google Earth. 2012. Available from: https://earth.google.com/web/@44.05857699,-103.29932435,1032.01254a,357.04709383d,35y,348.84520315h,0t,0r/data=OgMKATA [cited 1 November 2023].


21.
Corentium Home. Digital radon detector: user manual. Oslo: Airthings, AS; 2017.


22.
Parker TM, Barnes ME. Rearing velocity impacts on landlocked fall Chinook salmon (Oncorhynchus tshawytscha) growth, condition, and survival. J Anim Sci 2014; 4(5): 244. doi: 10.4236/ojas.2014.45031


23.
Marsh JW, Tomášek L, Laurier D, Harrison JD. Effective dose coefficients for radon and progeny: a review of ICRP and UNSCEAR values. Radiat Prot Dosimetry 2021; 195(1): 1–20. doi: 10.1093/rpd/ncab106


24.
Paque F, Bailey MR, Leggett RW, Lipsztein J, Marsh J, Fell TP, et al. ICRP publication 137: occupational intakes of radionuclides: part 3. Ann ICRP 2017; 46: 1–486. doi: 10.1177/0146645317734963


25.
Petersen ML, Larsen T. Cost–benefit analyses of radon mitigation projects. J Environ Manage 2006; 81(1): 19–26. doi: 10.1016/j.jenvman.2005.10.005


26.
Kokotti H, Keskikuru T, Kalliokoski P. Radon mitigation with pressure-controlled mechanical ventilation. Build Environ 1994; 29(3): 387–92. doi: 10.1016/0360-1323(94)90039-6


27.
Ennemoser O, Oberdorfer E, Brunner P, Schneider P, Purtscheller F, Stingl V. Mitigation of indoor radon in an area with unusually high radon concentrations. Health Phys 1995; 69(2): 227–32. doi: 10.1097/00004032-199508000-00007


28.
Fisher EL, Fuortes LJ, Field RW. Occupational exposure of water-plant operators to high concentrations of radon-222 gas. J Occup Environ Med 1996; 38(8): 759–64. doi: 10.1097/00043764-199608000-00010


29.
Ringer W, Simader M, Bernreiter M, Kaineder H. Mitigation of three water supplies with high radon exposure to the employees. Radiat Protect Dosimetry 2008; 130(1): 26–9. doi: 10.1093/rpd/ncn126


30.
Arvela H, Reisbacka H. Indoor radon mitigation (No. STUK-A--237). Radiation and Nuclear Safety Authority STUK; 2009, Helsinki, Finland.


31.
Al Jassim M, Isaifan R. A review on the sources and impacts of radon indoor air pollution. J Environ Toxicol Stud 2018; 2(1): 112. doi: 10.16966/2576-6430.112


32.
Dai D, Neal FB, Diem J, Deocampo DM, Stauber C, Dignam T. Confluent impact of housing and geology on indoor radon concentrations in Atlanta, Georgia, United States. Sci Total Environ 2019; 668: 500–11. doi: 10.1016/j.scitotenv.2019.02.257


33.
Yazzie SA, Davis S, Seixas N, Yost MG. Assessing the impact of housing features and environmental factors on home indoor radon concentration levels on the Navajo nation. Int J Environ Res Public Health 2020; 17(8): 2813. doi: 10.3390/ijerph17082813


34.
Kikaj D, Vaupotič J. Parameters influencing deviation of radon concentration from its typical diurnal pattern in the winter and summer seasons. Geol Macedonica 2017; 31(2): 157–70. doi: 10.46763/GEOL


35.
Bekdash F, Rana P, Scriba T, Waldron M, Palit A, Benelmouffok D. Technologies and costs for the removal of radon from drinking water. Public Comment Draft. Report Number: EPA/815/D 99/004. 1999, Helsinki, Finland, p. 228.


36.
Dixon KL, Lee RG, Smith J, Zielinski P. Evaluating aeration technology for radon removal. J Am Water Works Ass 1991; 83(4): 141–8. doi: 10.1002/j.1551-8833.1991.tb07132.x


37.
Tyrväinen JT, Turtiainen T, Naarala J. Radon transport to indoor air in groundwater plants as a by-effect of different water treatments. J Water Process Eng 2023; 56: 104408. doi: 10.1016/j.jwpe.2023.104408
tr>
1.
Dwyer W, Orr W. Technical notes: removal of radon gas liberated by aeration columns in fish hatcheries. Prog Fish Cult 1992; 54(1): 57–8. doi: 10.1577/1548-8640(1992)054<0057:TNRORG>2.3.CO;2


2.
Kitto ME, Kunz CO, McNulty CA, Covert S, Kuhland M. Radon measurements and mitigation at a fish hatchery. Health Phys 1998; 74(4): 451–5. doi: 10.1097/00004032-199804000-00006


3.
World Health Organization. WHO handbook on indoor radon: a public health perspective. World Health Organization; Geneva, Switzerland, 2009.


4.
Skeppstrom K, Olofsson B. Uranium and radon in groundwater. Eur Water 2007; 17(18): 51–62.


5.
Nayak T, Basak S, Deb A, Dhal PK. A systematic review on groundwater radon distribution with human health consequences and probable mitigation strategy. J Environ Radioact 2022; 247: 1–9. doi: 10.1016/j.jenvrad.2022.106852


6.
Ghernaout D. Aeration process for removing radon from drinking water – a review. Appl Eng 2019; 3(1): 32–45. doi: 10.11648/j.ae.20190301.15


7.
Al-Zoughool M, Krewski D. Health effects of radon: a review of the literature. Int J Radiat Biol 2009; 85(1): 57–69. doi: 10.1080/09553000802635054


8.
Lewis RK. An investigation of radon occurrence in Pennsylvania fish and boat commission fish culture stations. International Radon Symposium, 2001, Daytona Beach, Florida, USA pp. 52–67.


9.
Krewski D, Lubin JH, Zielinski JM, Alavanja M, Catalan VS, Field RW, et al. Residential radon and risk of lung cancer: a combined analysis of 7 North American case-control studies. Epidemiology 2005; 16(2): 137–45. doi: 10.1097/01.ede.0000152522.80261.e3


10.
Gordon K, Terry PD, Lui X, Harris T, Vowell D, Yard B, et al. Radon in schools: a brief review of state laws and regulations in the United States. Int J Environ Res Public Health 2018; 15: 2149. doi: 10.3390/ijerph15102149


11.
Kang J, Seo S, Jin YW. Health effects of radon exposure. Yonsei Med J 2019; 60(7): 597–603. doi: 10.3349/ymj.2019.60.7.597


12.
Radford EP. Potential health effects of indoor radon exposure. Environ Health Perspect 1985; 62: 281–7. doi: 10.1289/ehp.8562281


13.
Barros-Dios JM, Ruano-Ravina A, Perez-Rios M, Castro-Bernardez M, Abal-Arca J, Tojo-Castro M. Residential radon exposure, historical types, and lung cancer risk: a case-control study in Galicia, Spain. Cancer Epidemiol Biomarkers Prevent 2012; 21(6): 951–8. doi: 10.1158/1055-9965.EPI-12-0146-T


14.
USEPA. Radon. United State Environmental Protection Agency; 2023. Available from: https://www.epa.gov/radon [cited 1 November 2023].


15.
Lantz PM, Mendez D, Philbert MA. Radon, smoking, and lung cancer: the need the refocus radon control policy. Am J Public Health 2013; 103(3): 443–47. doi: 10.2105/AJPH.2012.300926


16.
ATSDR. Radon toxicity: standards and regulations. Agency for Toxic Substances and Disease Registry; 2023. Available from: https://www.atsdr.cdc.gov/csem/radon/standards.html#:~:text=The%20EPA%20environmental%20radon%20level,are%20reducible%20(EPA%202009c) [cited 1 November 2023].


17.
European Commission. Council directive 2013/59/Euratom. Off J Eur Union 2014; 57: L13.


18.
Venoso G, Iacoponi A, Pratesi G, Guazzini M, Boccini L, Corbani E, et al. Impact of temporal variability of radon concentration in workplaces on the actual radon exposure during working hours. Sci Rep 2021; 11(1): 16984. doi: 10.1038/s41598-021-96207-9


19.
Flexser S, Wollenberg HA, Smith AR. Radon in groundwater of the Long Valley Caldera, California. In: National water well association, radon in ground water. 1st ed. CRC Press; 1987, Boca Raton, Florida, USA, pp. 131–49.


20.
Google Earth. 2012. Available from: https://earth.google.com/web/@44.05857699,-103.29932435,1032.01254a,357.04709383d,35y,348.84520315h,0t,0r/data=OgMKATA [cited 1 November 2023].


21.
Corentium Home. Digital radon detector: user manual. Oslo: Airthings, AS; 2017.


22.
Parker TM, Barnes ME. Rearing velocity impacts on landlocked fall Chinook salmon (Oncorhynchus tshawytscha) growth, condition, and survival. J Anim Sci 2014; 4(5): 244. doi: 10.4236/ojas.2014.45031


23.
Marsh JW, Tomášek L, Laurier D, Harrison JD. Effective dose coefficients for radon and progeny: a review of ICRP and UNSCEAR values. Radiat Prot Dosimetry 2021; 195(1): 1–20. doi: 10.1093/rpd/ncab106


24.
Paque F, Bailey MR, Leggett RW, Lipsztein J, Marsh J, Fell TP, et al. ICRP publication 137: occupational intakes of radionuclides: part 3. Ann ICRP 2017; 46: 1–486. doi: 10.1177/0146645317734963


25.
Petersen ML, Larsen T. Cost–benefit analyses of radon mitigation projects. J Environ Manage 2006; 81(1): 19–26. doi: 10.1016/j.jenvman.2005.10.005


26.
Kokotti H, Keskikuru T, Kalliokoski P. Radon mitigation with pressure-controlled mechanical ventilation. Build Environ 1994; 29(3): 387–92. doi: 10.1016/0360-1323(94)90039-6


27.
Ennemoser O, Oberdorfer E, Brunner P, Schneider P, Purtscheller F, Stingl V. Mitigation of indoor radon in an area with unusually high radon concentrations. Health Phys 1995; 69(2): 227–32. doi: 10.1097/00004032-199508000-00007


28.
Fisher EL, Fuortes LJ, Field RW. Occupational exposure of water-plant operators to high concentrations of radon-222 gas. J Occup Environ Med 1996; 38(8): 759–64. doi: 10.1097/00043764-199608000-00010


29.
Ringer W, Simader M, Bernreiter M, Kaineder H. Mitigation of three water supplies with high radon exposure to the employees. Radiat Protect Dosimetry 2008; 130(1): 26–9. doi: 10.1093/rpd/ncn126


30.
Arvela H, Reisbacka H. Indoor radon mitigation (No. STUK-A--237). Radiation and Nuclear Safety Authority STUK; 2009, Helsinki, Finland.


31.
Al Jassim M, Isaifan R. A review on the sources and impacts of radon indoor air pollution. J Environ Toxicol Stud 2018; 2(1): 112. doi: 10.16966/2576-6430.112


32.
Dai D, Neal FB, Diem J, Deocampo DM, Stauber C, Dignam T. Confluent impact of housing and geology on indoor radon concentrations in Atlanta, Georgia, United States. Sci Total Environ 2019; 668: 500–11. doi: 10.1016/j.scitotenv.2019.02.257


33.
Yazzie SA, Davis S, Seixas N, Yost MG. Assessing the impact of housing features and environmental factors on home indoor radon concentration levels on the Navajo nation. Int J Environ Res Public Health 2020; 17(8): 2813. doi: 10.3390/ijerph17082813


34.
Kikaj D, Vaupotič J. Parameters influencing deviation of radon concentration from its typical diurnal pattern in the winter and summer seasons. Geol Macedonica 2017; 31(2): 157–70. doi: 10.46763/GEOL


35.
Bekdash F, Rana P, Scriba T, Waldron M, Palit A, Benelmouffok D. Technologies and costs for the removal of radon from drinking water. Public Comment Draft. Report Number: EPA/815/D 99/004. 1999, Helsinki, Finland, p. 228.


36.
Dixon KL, Lee RG, Smith J, Zielinski P. Evaluating aeration technology for radon removal. J Am Water Works Ass 1991; 83(4): 141–8. doi: 10.1002/j.1551-8833.1991.tb07132.x


37.
Tyrväinen JT, Turtiainen T, Naarala J. Radon transport to indoor air in groundwater plants as a by-effect of different water treatments. J Water Process Eng 2023; 56: 104408. doi: 10.1016/j.jwpe.2023.104408
Published
2024-04-18
How to Cite
Gerber A. L., Martling S., Voorhees J. M., Marchant H., & Barnes M. E. (2024). Radon levels in three fish rearing buildings at Cleghorn Springs State Fish Hatchery, Rapid City, South Dakota, USA. Journal of the European Radon Association, 5. https://doi.org/10.35815/radon.v5.10379
Section
Original Research Articles