A user’s guide to radon priority areas, examples from Ireland

  • Meabh B. Hughes Department of Geology, School of Natural Sciences, Trinity College, Dublin, Ireland
  • Javier Elío Department of Planning, Aalborg University Copenhagen, Copenhagen, Denmark
  • Quentin G. Crowley Department of Geology, School of Natural Sciences, Trinity College, Dublin, Ireland
Keywords: Indoor-Radon, Radon maps, Radon mapping objectives, Spatial Resolution, Geogenic data.


Exposure to radon over time has significant detrimental effects on human health. Approximately 226,000 annual radon-related deaths have been reported from 66 countries (1). Many countries have a radon action plan, in order to reduce the harmful effects of radon exposure on the general public. Maps are routinely used to assist with mitigation strategies and delineate areas of priority regulation. Standard regulations in the European Union include the requirement for workplaces to test and the requirement to have reduction methods in newly built homes. Such laws are assigned systematically to areas that are understood to have high values of indoor radon. This article demonstrates that the boundaries of radon priority areas may vary, depending on the data set and methods used. We propose a table and a decision matrix to assist in choosing the most appropriate visual aid according to the purpose for which the map is to be used. We conclude that no single radon map is suitable to fit all objectives, and some maps are more suitable than others depending on the purpose.


Download data is not yet available.

Author Biography

Quentin G. Crowley , Department of Geology, School of Natural Sciences, Trinity College, Dublin, Ireland




  1. Gaskin J, Coyle D, Whyte J, Krewksi D. Global estimate of lung cancer mortality attributable to residential radon. Environ Health Perspec 2018; 126: 057009. doi: 10.1289/EHP2503

  2. European Commission. Council directive 2013/59/Euratom. Official Journal of the European Union 2013;2013/59/EURATOM. Publications Office of the European Union, Luxembourg.

  3. United Nations Scientific Committee on the Effects of Atomic Radiation. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 1958: Report to the General Assembly, with Scientific Annexes. 1958:229. United Nations, Vienna. https://doi.org/10.18356/0b0b1bc1-en.

  4. World Health Organisation. International radon project survey on radon guidelines, programmes and activities. World Health Organisation, Geneva, 2007.

  5. Monty C. UNSCEAR report 2000: sources and effects of ionizing radiation. J Radiol Protect 2000; 21. doi: 10.8/0952-4746/21/1/609

  6. Gunning GA. Studies of radon in Ireland: Outdoor levels, detector intercomparison and school remediation methods, [thesis] Trinity College (Dublin, Ireland). School of Physics, 2016.

  7. Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, et al. Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. BMJ 2005; 330: 223. doi: 10.1136/bmj.38308.477650.63

  8. Duffy JT, Madden JS, Mackin GM, McGarry AT, Colgan PA. A reconnaissance survey of radon in show caves in Ireland. Environment International 1996; 22: 415–23. doi: 10.6/S0160-4120(96)00140-7

  9. Kreuzer, M., Fenske, N., Schnelzer, M. and Walsh, L., Lung cancer risk at low radon exposure rates in German uranium miners. British journal of cancer 2015; 113: 1367–9. doi: 10.1038/bjc.2015.324

  10. Lorenzo-González M, Torres-Durán M, Barbosa-Lorenzo R, Provencio-Pulla M, Barros-Dios JM, Ruano-Ravina A. Radon exposure: a major cause of lung cancer. Expert review of respiratory medicine 2019; 13: 839–50. doi: 10.1080/17476348.2019.1645599

  11. Ludewig P, Lorenser E. Untersuchung der Grubenluft in den Schneeberger Gruben auf den Gehalt an Radiumemanation. Zeitschrift Für Physik 1924; 22: 178–85. doi: 10.1007/BF01328120

  12. Vahakangas KH, Metcalf RA, Welsh JA, Bennett WP, Harris CC, Samet JM, et al. Mutations of p53 and ras genes in radon-associated lung cancer from uranium miners. The Lancet 1992; 339: 576–80. doi: 10.1016/0140-6736(92)90866-2

  13. World Health Organisation. W.H.O Handbook on indoor radon: a public health perspective, World Health Organisation, Geneva, 2009.

  14. Yarmoshenko IV, Malinovsky GP. Lung cancer mortality and radon exposure in Russia. Nukleonika 2016; 61: 263–8. doi: 10.1515/nuka-2016-0044

  15. Ha M, Hwang S, Kang S, Park N-W, Chang B-U, Kim Y. Geographical correlations between indoor radon concentration and risks of lung cancer, non-Hodgkin’s Lymphoma, and Leukemia during 1999–2008 in Korea. Int J Environ Res Public Health 2017; 14: 344. doi: 10.3390/ijerph14040344

  16. López-Abente G, Núñez O, Fernández-Navarro P, Barros-Dios JM, Martín-Méndez I, Bel-Lan A, et al. Residential radon and cancer mortality in Galicia, Spain. Sci Total Environ 2018; 610–611: 1125–32. doi: 10.1016/j.scitotenv.2017.08.144

  17. Monastero RN, Meliker JR. Incidence of brain and spinal cord cancer and county-level radon levels in New Jersey, Wisconsin, Minnesota, Pennsylvania, and Iowa, USA. Environ Geochem Health 2020; 42: 389–95. doi: 10.1007/s10653-019-00368-6

  18. Ruano-Ravina A, Dacosta-Urbieta A, Miguel Barros-Dios J, T Kelsey K. Radon exposure and tumors of the central nervous system. Gaceta Sanitaria 2018; 32(6): 567–575. doi: 10.1016/j.gaceta.2017.01.002

  19. Rosario AS, Wichmann H-E. Environmental pollutants | Radon. In: Laurent GJ, Shapiro SD, editors. Encyclopedia of respiratory medicine. Oxford: Academic Press, 2006, p. 120–5.

  20. Schwela D. Pollution, indoor air. In: Wexler P, editor. Encyclopedia of toxicology. 3rd ed. Oxford: Academic Press, 2014; p. 1003–17.

  21. Tommasino L. Radiochemical methods | Radon. In: Worsfold P, Townshend A, Poole C, editors. Encyclopedia of analytical science (2nd ed.). Oxford: Elsevier, 2005; p. 32–44.

  22. Lucchetti C, Briganti A, Castelluccio M, Galli G, Santilli S, Soligo M, et al. Integrating radon and thoron flux data with gamma radiation mapping in radon-prone areas. The case of volcanic outcrops in a highly-urbanized city (Roma, Italy). J Environ Radioact 2019; 202: 41–50. doi: 10.1016/j.jenvrad.2019.02.004

  23. Vuckovic B, Gulan L, Milenkovic B, Stajic JM, Milic G. Indoor radon and thoron concentrations in some towns of central and South Serbia. J Environ Manage 2016; 183: 938–44. doi: 10.1016/j.jenvman.2016.09.053

  24. Avinash PR, Rajesh S, Kerur BR, et al. Radon, thoron and their progeny concentration variations in dwellings of Gogi region, Yadgir district of Karnataka, India. J Radioanal Nucl Chem 302, 1321–1326, 2014. https://doi.org/10.1007/s10967-014-3608-x

  25. Krewski D, Lubin JH, Zielinsk JM, Alavanja M, Catalan VS, Field RW, et al. Residential Radon and risk of lung cancer: a combined analysis of 7 North American case-control studies. Epidemiology 2019; 16(2): 137–45. doi: 10.1097/01.ede.0000152522.80261.e3

  26. Samet JM. Radon and lung cancer. JNCI 1989; 81: 745–58. doi: 10.1093/jnci/81.10.745

  27. Taylor JA, Watson MA, Devereux TR, Michels RY, Saccomanno G, Anderson M, et al. p53 mutation hotspot in radon-associated lung cancer. The Lancet 1994; 343: 86–7. doi: 10.1016/S0140-6736(94)90818-4

  28. Je H-K, Kang C, Chon H-T. A preliminary study on soil–gas radon geochemistry according to different bedrock geology in Korea. Environ Geochem Health 1999; 21: 117–31. doi: 10.1023/A:1006613016217

  29. Gallagher V, Knights KV, Carey S, Glennon M, Scanlon R. Atlas of topsoil geochemistry of the Northern Counties of Ireland: Data from the Tellus and Tellus border projects. Geological Survey of Ireland, Dublin, 2016.

  30. Young ME, Knights KV, Smyth D, Glennon MM, Scanlon RP, Gallagher V. The Tellus geochemical surveys, results and applications. Unearthed: Impacts of the Tellus Surveys of the North of Ireland, Royal Irish Academy, Dublin, 2016; p. 33–52. doi: 10.3318/978-1-908996-88-6.ch3

  31. Elío J, Crowley Q, Scanlon R, Hodgson J, Long S. Logistic regression model for detecting radon prone areas in Ireland. Sci Total Environ 2017; 181: 599–600. doi: 10.1016/j.scitotenv.2017.05.071

  32. Ferreira A, Daraktchieva Z. Indoor radon measurements in south west England explained by topsoil and stream sediment geochemistry, airborne gamma-ray spectroscopy and geology. Elsevier J Environ Radioact 2018. doi: 10.1016/j.jenvrad.2016.05.007

  33. Akbari K, Mahmoudi J, Ghanbari M. Influence of indoor air conditions on radon concentration in a detached house. J Environ Radioact 2013; 116: 166–73. doi: 10.1016/j.jenvrad.2012.08.013

  34. Casal-Mouriño A, Ruano-Ravina A, Torres-Durán M, Parente-Lamelas I, Provencio-Pulla M, Castro-Añón O, et al. Lung cancer survival in never-smokers and exposure to residential radon: results of the LCRINS study. Cancer Letters 2020; 487: 21–6. doi: 10.1016/j.canlet.2020.05.022

  35. Lantz PM, Mendez D, Philbert MA. Radon, smoking, and lung cancer: the need to refocus radon control policy. Am J Publ Health 2013; 103: 443–7. doi: 10.2105/AJPH.2012.300926

  36. Muntean LE, Cosma C, Cucos A, Dicu T, Moldovan DV. Assessment of annual and seasonal variation of indoor radon levels in dwelling houses from Alba County, Romania. Rom Journ Phys 2014; 59: 163–71.

  37. Rigby JG, La Pointe DD. Wind and barometric pressure effects on radon in two mitigated houses. The 1993 international radon conference; p. 61–8, University of Nevada, Reno, 1993.

  38. Tollefsen T, Cinelli G, Bossew P, Gruber V, De Cort M. From the European indoor radon map towards an atlas of natural radiation. Radiat Protect Dosim 2014; 162: 129–34. doi: 10.1093/rpd/ncu244

  39. Elío J, Crowley Q, Scanlon R, Hodgson J, Zgaga L. Estimation of residential radon exposure and definition of Radon Priority Areas based on expected lung cancer incidence. Environ Int 2018; 114: 69–76. doi: 10.1016/j.envint.2018.02.025

  40. Bossew P, Cinelli G, Ciotoli G, Crowley Q, Cort M, Elío J, et al. Development of a Geogenic Radon hazard index – concept, history, experiences. Int J Environ Res Publ Health 2020; 17: 4134. doi: 10.3390/ijerph17114134

  41. Building Regulations. Building Regulations. Statutory Instruments No. 497 of 1997, Irish statute, Government of Ireland, Dublin, 1997.

  42. Radiological Protection Act 1991 (Ionising Radiation) regulations. Statutory Instruments Ireland, S.I. No. 30 of 2019. Oireachtas, Government of Ireland, Dublin, 2019.

  43. Environmental Protection Agency Ireland. Radon map: Environmental Protection Agency, Ireland. 2020. Available from: https://www.epa.ie/radiation/radonmap/ [cited 6 October 2021].

  44. Bossew P. Radon Priority Areas – definition, estimation and uncertainty. Nucl Technol Radiat Protect 2018; 33: 11. doi: 10.2298/NTRP180515011B

  45. Cinelli G, de C, Tollefsen T, (Eds.), European atlas of natural radiation, Publication Office of the European Union, Lexembourg, 2019.

  46. Kropat G, Bochud F, Jaboyedoff M, Laedermann J-P, Murith C, Palacios M, et al. Major influencing factors of indoor radon concentrations in Switzerland. J Environ Radioact 2014; 129: 7–22. doi: 10.1016/j.jenvrad.2013.11.010

  47. Petersell V, Gustav Å. Radon risk Map of Estonia: explanatory text to the radon risk map set of Estonia at scale of 1: 500 000. Eesti Geoloogiakeskus, Tallinn, 2005

  48. Bochicchio F, Campos-Venuti G, Piermattei S, Nuccetelli C, Risica S, Tommasino L, et al. Annual average and seasonal variations of residential radon concentration for all the Italian Regions. Radiat Meas 2005: 686–94. doi: 10.1016/j.radmeas.2004.12.023

  49. Ministry of the Environment of Slovak Republic. State of the Environment. Report of the Slovak Republic, Bratislava, 2003.

  50. Friedmann H, Baumgartner A, Bernreiter M, Gräser J, Gruber V, Kabrt F, et al. Indoor radon, geogenic radon surrogates and geology – investigations on their correlation. J Environ Radioact 2017; 166: 382–9. doi: 10.1016/j.jenvrad.2016.04.028

  51. Watson RJ, Smethurst MA, Ganerød GV, Finne I, Rudjord AL. The use of mapped geology as a predictor of radon potential in Norway. J Environ Radioact 2017; 166: 341–54. doi: 10.1016/j.jenvrad.2016.05.031

  52. Neznal M, Neznal M, Matolin M, Barnet I, Miksova J. The new method for assessing the radon risk of building sites. Czech Geological Institute, Prague, 2004.

  53. Antovic N, Vukotic P, Zekic R, Svrkota R, Ilic R. Indoor radon concentrations in urban settlements on the Montenegrin Coast. Radiat Meas 2007; 42: 1573–9. doi: 10.1016/j.radmeas.2007.06.003

  54. Tushe KB, Bylyku E, Xhixha G, Dhoqina P, Daci B, Cfarku F, et al. First step towards the geographical distribution of indoor radon in dwellings in Albania. Radiation protection dosimetry, Oxford University Press, Oxford, United Kingdom, 172, no. 4, 2016; p. 488–95.

  55. Andersen CE, Ulbak K, Damkjær A, Gravesen P. Radon i danske boliger. Kortlægning Af Lands-, Amts-Og Kommuneværdier 2001. København : Sundhedsstyrelsen, Statens Institut for Strålehygiejne, 132 p.

  56. Fennell SG, Mackin GM, Madden JS, McGarry AT, Duffy JT, O’colmain M, et al. Radon in dwellings: the Irish National Radon survey. Radiological Protection Institute of Ireland, Dublin, 2002.

  57. Cinelli G, Tollefsen T, Bossew P, Gruber V, Bogucarskis K, De Felice L, et al. Digital version of the European Atlas of natural radiation. J Environ Radioact 2019; 196: 240–52. doi: 10.1016/j.jenvrad.2018.02.008

  58. EPA. Environmental Protection Agency of Ireland Protocol for the measurement of radon in homes and workplaces, Environmental Protection Agency of Ireland, Wexford, 2019.

  59. Hickey C. Setting the Scene. National Radon forum 2019. Department of Communications, Climate Action and Environment, Dublin, Ireland (DCCAE).

  60. Walsh PM, National Cancer Registry, Environmental Protection Agency. A revision of the number of radon-related lung cancers in Ireland:National Radon Forum preliminary results, Wexford, 2017.

  61. Elío J, Crowley Q, Scanlon R, Hodgson J, Long S, Cooper M, et al. Application of airborne radiometric surveys for large-scale geogenic radon potential classification. J Eur Radon Assoc 2020; 1. doi: 10.35815/radon.v1.4358

  62. Elío J, Quentin C, Ray S, Jim H, Stephanie L. Rapid radon potential classification using soil-gas radon measurements in the Cooley Peninsula, County Louth, Ireland. Environmental Earth Sciences 2019; 78. doi: 10.1007/s12665-019-8339-4.1-16

  63. Bossew P. Determination of radon prone areas by optimized binary classification. J Environ Radioact 2014; 129: 121–32. doi: 10.1016/j.jenvrad.2013.12.015

  64. Leuraud K, Schnelzer M, Tomasek L, Hunter N, Timarche M, Grosche B, et al. Radon, smoking and lung cancer risk: results of a joint analysis of three European Case-control studies among Uranium miners. Radiat Res 2011; 176: 375–87. doi: 10.2307/41318201

  65. Meenakshi C, Mohankumar MN. Synergistic effect of radon in blood cells of smokers – an in vitro study. Mutat Res: Genet Toxicol Environ Mutagen 2013; 757: 79–82. doi: 10.1016/j.mrgentox.2013.06.018

  66. Li C, Wang C, Yu J, Fan Y, Liu D, Zhou W, et al. Residential Radon and histological types of lung cancer: a meta-analysis of case–control studies. Int J Environ Res Public Health 2020; 17: 1457. doi: 10.3390/ijerph17041457

  67. Park EJ, Lee H, Kim HC, Sheen SS, Koh SB, Park KS, et al. Residential Radon exposure and cigarette smoking in association with lung cancer: a matched case-control study in Korea. Int J Environ Res Publ Health 2020; 17: 2946. doi: 10.3390/ijerph17082946

  68. Hampson SE, Andrews JA, Lee ME, Foster LS, Glasgow RE, Liechtenstein E. Lay Understanding of synergistic risk: the case of Radon and cigarette smoking. Risk Analysis 1998; 18: 343–50. doi: 10.1111/j.1539-6924.1998.tb01300.x

  69. Butler KM, Huntington-Moskos L, Rayens MK, Wiggins AT, Hahn EJ. Perceived synergistic risk for lung cancer after environmental report-back study on home exposure to tobacco smoke and Radon. Am J Health Promot 2018; 33: 597–600. doi: 10.1177/0890117118793886

  70. World Health Organisation IA for R on C. The European Code Against Cancer, World Health Organisation, Geneva, Switzerland, 2016. https://www.europeancancerleagues.org/cancer-prevention-the-european-code-against-cancer/ [cited 6 October 2021].

  71. Irish Cancer Society. 12 ways to reduce your risk of getting cancer 2016.

  72. Friedmann H. Final results of the Austrian Radon Project. Health Physics 2005; 89: 339–48. doi: 10.1097/01.HP.0000167228.18113.27

  73. Friedmann H, Gröller J. An approach to improve the Austrian Radon Potential Map by Bayesian statistics. Journal of Environmental Radioactivity 2010;101:804–8. doi: 10.1016/j.jenvrad.2009.11.008.

  74. Cinelli G, Tondeur F, Dehandschutter B. Development of an indoor radon risk map of the Walloon region of Belgium, integrating geological information. Environ Earth Sci 2011; 62: 809–19. doi: 10.1007/s12665-010-0568-5

  75. Daraktchieva Z, Appleton J, Reese D. Radon in Northern Ireland: indicative Atlas. Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Oxfordshire, 2015.

  76. Miles J. Calibration and standardisation of etched track detectors. Radon Measurements By Etched Track Detectors: Applications in Radiation Protection, Earth Sciences and the Environment, World Scientific, Singapore; 1997, p. 143–154. doi: 10.1142/9789812830197_0006

  77. Miles JCH, Appleton JD, Rees DM, Green BMR, Adlam KAM, Myers AH. Indicative atlas of radon in England and Wales. Chilton, Oxon: Health Protection Agency, Government of the United Kingdom, Oxfordshire, 2007.

  78. Baluci C, Vincenti K, Tilluck B, Conchin S, Formosa S, Grech D. National mapping survey of indoor radon levels in the Maltese Islands (2010–2011). Malta Medical Journal, Msida 2013.

How to Cite
HughesM. B., ElíoJ., & Crowley Q. G. (2022). A user’s guide to radon priority areas, examples from Ireland. Journal of the European Radon Association, 3. https://doi.org/10.35815/radon.v3.7586
Special issue - European Radon Week 2020