Comparison of radon mapping methods for the delineation of radon priority areas – an exercise

  • Valeria Gruber Austrian Agency for Health and Food Safety (AGES), Linz, Austria
  • Sebastian Baumann Austrian Agency for Health and Food Safety (AGES), Linz, Austria
  • Oliver Alber Austrian Agency for Health and Food Safety (AGES), Graz , Austria
  • Christian Laubbichler Austrian Agency for Health and Food Safety (AGES), Graz; and LEC GmbH, Graz, Austria
  • Peter Bossew German Federal Office for Radiation Protection (BfS), Berlin, Germany
  • Eric Petermann German Federal Office for Radiation Protection (BfS), Berlin, Germany
  • Giancarlo Ciotoli Italian National Research Council, CNR-IGAG, Rome, Italy
  • Alcides Pereira University of Coimbra, CITEUC, Coimbra, Portugal
  • Filipa Domingos University of Coimbra, CITEUC, Coimbra, Portugal
  • François Tondeur ISIB-HE2B, Brussels, Belgium
  • Giorgia Cinelli European Commission, Joint Research Centre (JRC), Ispra, Italy
  • Alicia Fernandez University of Cantabria, Santander, Spain
  • Carlos Sainz University of Cantabria, Santander, Spain
  • Luis Quindos-Poncela University of Cantabria, Santander, Spain
Keywords: Radon, mapping, prediction, interpolation, radon priority areas, risk, hazard

Abstract

Background: Many different methods are applied for radon mapping depending on the purpose of the map and the data that are available. In addition, the definitions of radon priority areas (RPA) in EU Member States, as requested in the new European EURATOM BSS (1), are diverse.

Objective: 1) Comparison of methods for mapping geogenic and indoor radon, 2) the possible transferability of a mapping method developed in one region to other regions and 3) the evaluation of the impact of different mapping methods on the delineation of RPAs.

Design: Different mapping methods and several RPA definitions were applied to the same data sets from six municipalities in Austria and Cantabria, Spain.

Results: Some mapping methods revealed a satisfying degree of agreement, but relevant differences were also observed. The chosen threshold for RPA classification has a major impact, depending on the level of radon concentration in the area. The resulting maps were compared regarding the spatial estimates and the delineation of RPAs.

Conclusions: Not every mapping method is suitable for every available data set. Data robustness and harmonisation are the main requirements, especially if the used data set is not designed for a specific technique. Different mapping methods often deliver similar results in RPA classification. The definition of thresholds for the classification and delineation of RPAs is a guidance factor in the mapping process and is as relevant as harmonising mapping methods depending on the radon levels in the area.

Downloads

Download data is not yet available.

References


  1. Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Official J Eur Union L. 2014; 13(57): 1–73.

  2. Bossew P. Radon priority areas – definition, estimation and uncertainty. Nucl Tech Radiat Protect 2018; 33(3): 286–92. doi: 10.2298/NTRP180515011B

  3. Bochicchio F, Venoso G, Antignani S, Carpentieri C. Radon reference levels and priority areas considering optimisation and avertable lung cancers. Radiat Protect Dosim 2017; 177(1–2): 87–90. doi: 10.1093/rpd/ncx130

  4. World Health Organisation (WHO). WHO handbook on indoor radon: a public health perspective. World Health Organization; 2019. Available from: https://apps.who.int/iris/handle/10665/44149 [cited 21 October 2020]

  5. International Atomic Energy Agency (IAEA). Design and conduct of indoor radon surveys, safety reports series No. 98. Vienna; 2019. Available from: https://www-pub.iaea.org/MTCD/Publications/PDF/PUB1848_web.pdf [cited 21 October 2020]

  6. Pantelić G, Čeliković I, Živanović M, Vukanac I, Nikolić JK, Cinelli G, et al. Qualitative overview of indoor radon surveys in Europe. J Environ Radioact 2019; 204: 163–174. doi: 10.1016/j.jenvrad.2019.04.010

  7. Pantelić G, Čeliković I, Živanović M, Vukanac I, Nikolić JK, Cinelli G, et al. Literature review of Indoor radon surveys in Europe. Luxembourg: Publications Office of the European Union; 2018. Available from: https://publications.jrc.ec.europa.eu/repository/bitstream/JRC114370/jrc114370_final_metroradon_jrc114370.pdf

  8. Bossew P. Mapping the geogenic radon potential and estimation of radon prone areas in Germany. Radiat Emerg Med 2015; 4(2): 13–20. Available from: http://crss.hirosaki-u.ac.jp/wp-content/files_mf/1465449240rem_vol42_03_peter_bossew2.pdf

  9. Elío J, Crowley Q, Scanlon R, Hodgson J, Long S. Logistic regression model for detecting radon prone areas in Ireland. Sci Total Environ 2018; 599–600: 1317–29. doi: 10.1016/j.scitotenv.2017.05.071

  10. Friedmann H. Final results of the Austrian Radon Project. Health Phys 2005; 89(4): 339–48. doi: 10.1097/01.hp.0000167228.18113.27

  11. Dubois G. An overview of radon surveys in Europe, Publications Office of the European Union. Editor: European Commission; 2005.

  12. MetroRADON – Metrology for radon monitoring, project website. Available from: http://metroradon.eu [cited 21 October 2020].

  13. Baumann S, Bossew P, Celikovic I, Cinelli G, Ciotoli G, Domingos F, et al. MetroRADON Deliverable 5 – Report and guideline on the definition, estimation and uncertainty of radon priority areas (RPA). 2020. Available from: http://metroradon.eu/wp-content/uploads/2017/06/16ENV10-MetroRADON-D5-with-Annexes_Accepted.pdf [cited: 21 October 2020]

  14. Bossew P, Čeliković I, Cinelli G, Ciotoli G, Domingos F, Gruber V, et al. On harmonization of Radon maps (Draft submitted to JERA, January, 21 2021)

  15. Ringer W, Baumgartner A, Baumgartner A, Bernreiter M, Edtstadler T, Friedmann H, et al. Radonvollerhebung in den Gemeinden Reichenau, Haibach und Ottenschlag i.M. – Expertenbericht, Technical Report. Vienna: Bundesministeriums für Land-und Forstwirtschaft, Umwelt und Wasserwirtschaft; 2011.

  16. Kabrt F, Seidel C, Baumgartner A, Friedmann H, Rechberger F, Schuff M, et al. Radon soil gas measurements in a geological versatile region as basis to improve the prediction of areas with a high radon potential. Radiat Prot Dosimetry 2014; 160(1–3): 217–21. doi: 10.1093/rpd/ncu086

  17. Kabrt F, Baumgartner A, Maringer FJ. Study of parameters relevant for a better prediction of the radon potential. Appl Radiat Isot 2016; 109: 444–8. doi: 10.1016/j.apradiso.2015.11.096

  18. Friedmann H, Baumgartner A, Bernreiter M, Gräser J, Gruber V, Kabrt F, et al. Indoor radon, geogenic radon surrogates and geology – Investigations on their correlation. J Environ Radioact 2017; 166(Part 2): 382–9. doi: 10.1016/j.jenvrad.2016.04.028

  19. Kabrt F, Baumgartner A, Stietka M, Friedmann H, Gruber V, Ringer W, et al. A comparison of radon indoor measurements with interpolated radon soil gas values using the inverse weighting method on measured results. Radiat Protect Dosim 2017; 177(Issue 1–2): 213–19. doi: 10.1093/rpd/ncx141

  20. Dubois G, Bossew P, Friedmann H. A geostatistical autopsy of the Austrian indoor radon survey (1992–2002). Sci Total Environ 2007; 377: 368–95. doi: 10.1016/j.scitotenv.2007.02.012

  21. Sainz-Fernandez C, Fernandez-Villar A, Fuente-Merino I, Gutierrez-Villanueva JL, Martin-Matarranz JL, Garcia-Talavera M, et al. The Spanish indoor radon mapping strategy. Radiat Prot Dosim 2014; 162(1–2): 58–62. doi: 10.1093/rpd/ncu218

  22. Spanish Nuclear Safety Council (CSN). Natural radiation maps. Viewer: Spanish radon potential map; 2017. Available from: https://www.csn.es/mapa-del-potencial-de-radon-en-espana [cited 21 October 2020]

  23. Sainz Fernández C, Quindós Poncela LS, Fernández Villar A, Fuente Merino I, Gutierrez Villanueva JL, Celaya González S, et al. Spanish experience on the design of radon surveys based on the use of geogenic information. J Environ Radioat 2017; 166(2): 390–7. doi: doi.org/10.1016/j.jenvrad.2016.07.007

  24. Spanish Nuclear Safety Council (CSN). Map of natural gamma radiation in Spain (MARNA) at a scale of 1: 1,000,000. 2001. Available from: https://www.csn.es/mapa-de-radiacion-gamma-natural-marna-mapa [cited 21 October 2020]

  25. IGME, Geological and Mining Institute of Spain, Lithostratigraphic Map of Spain, 1:200.000. Available from: http://mapas.igme.es/Servicios/default.aspx#IGME_Litoestratigrafico200 [cited 21 October 2020].

  26. European Commission, Joint Research Centre, Cinelli G, De Cort M, Tollefsen T, (Eds.). European atlas of natural radiation. Luxembourg: Publication Office of the European Union; 2019.

  27. FOREGS – EuroGeo Surveys. Geochemical Atlas of Europe. Available from: http://weppi.gtk.fi/publ/foregsatlas/index.php [cited 21 October 2020].

  28. Reimann C, Birke M, Demetriades A, Filzmoser P, O’Connor P, (Eds.). Chemistry of Europe’s agricultural soils - Part A: Methodology and interpretation of the GEMAS data set & Part B: General background information and further analysis of the GEMAS data set. Geologisches Jahrbuch (Reihe B 102 & 103), Hannover: Schweizerbarth; 2014. 322 pp. & 528 pp. + DVD.

  29. Suarez Mahou E, Fernández Amigot JA, Baeza Espasa J, Moro Benito MC, García Pomar D, Moreno Del Pozo J, Lanaja Del Busto J. CSN Technical Reports Collection 5.2000. INT-04-02. Marna Project. Map of natural gamma radiation, Nuclear Safety Council (CSN), Madrid, 2000. Legal deposit: M-668-2001, ISBN: 84-95341-12-3

  30. Slapansky P, Bieber G, Motschka K, Ahl A, Winkler E, Schattauer I. Aerophysikalische Vermessung im Bereich Bad Leonfelden (OÖ), Endbericht, ÜLG-20/12a & 13a, ÜLG-28/12a & 13a, Vienna: Geological Survey of Austria (GBA); 2014.

  31. IGME Geological and Mining Institute of Spain, One Geology Map of Spain, 1:1M. Available from: http://mapas.igme.es/gis/rest/services/oneGeology/ESP_1M_IGME_1GEGeology_EN/MapServer [cited 21 October 2020].

  32. Geological Survey of Austria (GBA), Geological Map of Austria, 1:500.000. Available from: https://www.data.gv.at/katalog/dataset/onegeology-gba [cited 21 October 2020].

  33. IGME Geological and Mining Institute of Spain, Karstic Map of Spain, 1:1M. Available from: http://mapas.igme.es/gis/rest/services/Cartografia_Tematica/IGME_Karst_1M/MapServer [cited 21 October 2020].

  34. Bundesforschungszentrum für Wald (BFW). Bodenkarte Österreich. Available from: https://bodenkarte.at [cited 21 October 2020].

  35. Gruber V, Baumann S, Himmelbauer K, Laubichler C, Alber O, Ciotoli G, et al. Radon mapping exercise. Final report of MetroRADON Activity 4.4.2, 16ENV10-MetroRADON. Linz: AGES; 2020.

  36. Wood SN. Generalized additive models: an introduction with R. Second Edition. Chapman & Hall/CRC Texts in Statistical Science. Boca Raton: CRC Press; 2017.

  37. Borgoni R, De Francesco D, De Bartolo D, Tzavidis N. Hierachical modelling of indoor radon concentration: how much do geology and building factors matter? J Environ Radioact 2014; 138: 227–37. doi: 10.1016/j.jenvrad.2014.08.022

  38. JP Chilès, Delfiner P. Geostatistics: modeling spatial uncertainty. 2nd edition. New York, NY: Wiley; 2012.

  39. Wackernagel H. Multivariate Geostatistics: an introduction with applications. 3rd edition. Berlin: Springer-Verlag; 2003.

  40. Isaaks E, Srivastava R. An introduction to applied geostatistics. New York, NY: Oxford University Press Inc., 1989; 561 p.

  41. Neznal M, Neznal M, Matolín M, Barnet I, Mikšová J. The new method for assessing the radon risk of building sites. Czech Geological Survey Special Papers 16. Prague: Czech Geological Survey; 2004, p. 48. Available from: https://www.radon-vos.cz/pdf/metodika.pdf

  42. Krivoruchko K. Empirical Bayesian Kriging. Redlands, CA: Esri. Available from: http://www.esri.com/news/arcuser/1012/empirical-byesian-kriging.html [cited 04 November 2020]

  43. Krivoruchko K, Gribov A. Evaluation of empirical Bayesian kriging. Spatial Stat 2019; 32. doi: 10.1016/j.spasta.2019.100368

  44. Cinelli G, Tondeur F, Dehandschutter B, Development of an indoor radon risk map of the Walloon region of Belgium, integrating geological information. Environ Earth Sci 2011; 62(4): 809–819. doi: 10.1007/s12665-010-0568-5

  45. Tondeur F, Cinelli G. A software for indoor radon risk mapping based on geology. Nucl Tech Radiat Protect 2014; XXIX: S59–63.

  46. Cinelli G, Tondeur F. Log-normality of indoor radon data in the Walloon region of Belgium. J Environ Radioact 2015; 143: 100. doi: 10.1016/j.jenvrad.2015.02.014

  47. AFCN. Belgium Radon Map. Available from: https://afcn.be/fr/dossiers-dinformation/radon-et-radioactivite-dans-votre-habitation/radon#Taux de radon dans votre commune [cited 21 October 2020].

Published
2021-03-31
How to Cite
Gruber, V., Baumann, S., Alber, O., Laubbichler, C., Bossew, P., Petermann, E., Ciotoli, G., Pereira, A., Domingos, F., Tondeur, F., Cinelli, G., Fernandez, A., Sainz, C., & Quindos-Poncela, L. (2021). Comparison of radon mapping methods for the delineation of radon priority areas – an exercise. Journal of the European Radon Association, 2. https://doi.org/10.35815/radon.v2.5755
Section
Original Research Articles