Technical Report Evaluation and study of radon occupational exposure levels in dams: a case study of the Gallery of Medau Zirimilis Dam (Sardinia, Italy)

  • Mirsina Mousavi Aghdam Research Fellow at Trinity College Dublin
Keywords: radon exposure, workplace, radiometric investigations, geological structure, radon transfer model

Abstract

Protection of people from radon exposure in workplaces is an important factor in decreasing lung cancer risk. International authorities have set ‘reference levels’ to control enhanced radon exposure. Radiometric investigations, including in-situ radon measurements and laboratory gamma-spectroscopy, were carried out to monitor the radon exposure and define the radon transfer model in the workplaces of Medau-Zirimilis Dam in Sardinia. It was found that a shale formation is the main source of radon accumulated in the gallery of this dam. The water passing through the bedrock transports a considerable amount of sediments containing uranium-bearing minerals. Outgassing of radon from water flowing in the drainage canal and its accumulation due to poor ventilation could be the main reasons for the enhanced indoor radon level. The methodology introduced here can be adopted in underground workplaces like mines and tunnels to understand the natural radiation hazard and the effectiveness of the possible mitigation strategies.

Downloads

Download data is not yet available.

References


1.
Avrorin VV, Krasikova RN, Nefedov VD, Toropova MA. The chemistry of radon. Russ Chem Rev 1982; 51(1): 12. doi: 10.1070/RC1982v051n01ABEH002787


2.
Dardac M, Elío J, Aghdam MM, Banríon M, Crowley Q. Application of airborne geophysical survey data in a logistic regression model to improve the predictive power of geogenic radon maps. A case study in Castleisland, County Kerry, Ireland. Sci Total Environ 2023; 894: 164965. doi: 10.1016/j.scitotenv.2023.164965


3.
Aghdam MM, Crowley Q, Rocha C, Dentoni V, Da Pelo S, Long S, et al. A study of natural radioactivity levels and radon/thoron release potential of bedrock and soil in Southeastern Ireland. Int J Environ Res Public Health 2021; 18(5): 2709. doi: 10.3390/ijerph18052709


4.
Dentoni V, Da Pelo S, Aghdam MM, Randaccio P, Loi A, Careddu N, et al. Natural radioactivity and radon exhalation rate of Sardinian dimension stones. Constr Build Mater 2020; 247: 118377. doi: 10.1016/J.CONBUILDMAT.2020.118377


5.
Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, et al. Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. BMJ 2005; 330(7485): 223. doi: 10.1136/bmj.38308.477650.63


6.
Liu Y, Han X, Cui X, Zhao X, Zhao X, Zheng H, et al. Association between air pollutants and acute exacerbation of chronic obstructive pulmonary disease: a time stratified case-crossover design with a distributed lag nonlinear model. GeoHealth 6(2): e2021GH000529. doi: 10.1029/2021GH000529


7.
Zeeb H, Shannoun F, World Health Organization. WHO handbook on indoor radon: a public health perspective. Geneva: World Health Organization; 2009.


8.
Bucci S, Pratesi G, Viti ML, Pantani M, Bochicchio F, Venoso G. Radon in workplaces: first results of an extensive survey and comparison with radon in homes. Radiat Prot Dosimetry 2011; 145(2–3): 202–5. doi: 10.1093/rpd/ncr040


9.
Gustafsson M, Mrabit K, Na SH. Radiation protection against radon in workplaces other than mines. Vienna: International Atomic Energy Agency; 2003.


10.
Stietka M, Baumgartner A, Seidel C, Maringer FJ. Development of standard methods for activity measurement of natural radionuclides in waterworks as basis for dose and risk assessment – first results of an Austrian study. Appl Radiat Isot 2013; 81: 294–7. doi: 10.1016/j.apradiso.2013.03.027


11.
Al-azmi D, Okeyode IC, Alatise OO, Mustapha AO. Setup and procedure for routine measurements of radon exhalation rates of building materials. Radiat Meas 2018; 112(January): 6–10. doi: 10.1016/j.radmeas.2018.03.001


12.
Haneberg WC, Wiggins A, Curl DC, Greb SF, Andrews Jr WM, Rademacher K, et al. A geologically based indoor-radon potential map of Kentucky. GeoHealth 2020; 4(11): e2020GH000263. doi: 10.1029/2020GH000263


13.
Moldovan M, Benea V, Niţă DC, Papp B, Burghele BD, Bican-Brişan N, et al. Radon and radium concentration in water from North-West of Romania and the estimated doses. Radiat Prot Dosimetry 2014; 162(1–2): 96–100. doi: 10.1093/rpd/ncu230


14.
Yanchao S, Qingzhao Z, Hongxing C, Changsong H, Pinhua Z, Yunyun W. Radon concentration measurement and dose estimation in non-uranium mines in China (2019–21). Radiat Prot Dosimetry 2023; 199(6): 491–7. doi: 10.1093/rpd/ncad036


15.
Sandıkcıoğlu Gümüş A. Determination of radon activity concentrations in some well waters near the Akşehir-Simav fault system and estimation of mean annual effective doses. Radiat Prot Dosimetry 2023; 199(5): 471–81. doi: 10.1093/rpd/ncad031


16.
Schrag JM. Naturally occurring radium (Ra) in home drinking-water wells in the Sandhills region of South Carolina, USA: can high concentrations be predicted? GeoHealth 2017; 1(4): 138–50. doi: 10.1002/2017GH000069


17.
Trautmannsheimer M, Eggl H, Huebel K. Monitoring of radon-exposed workplaces in water supply facilities in Bavaria (southern Germany). In Radiation protection for humans and society in tomorrow’s Europe. Joint meeting of OeVS (Oesterreichischer Verband fuer Strahlenschutz) and FS (Fachverband fuer Strahlenschutz). 33. FS annual meeting. Austria: Iaea; 2001.


18.
Sadrnejhad SA, Mousavi Aghdam MS, Memarian Fard M, Sharif Tehrani Z. Geothermal heat store in unsaturated/saturated soil charged from a solar heating system. Int J Geo Sci Environ Plan 2016; 1(2): 1–10.


19.
Anchuela ÓP, Frongia P, Di Gregorio F, Sainz AMC, Juan AP. Internal characterization of embankment dams using ground penetrating radar (GPR) and thermographic analysis: a case study of the Medau Zirimilis Dam (Sardinia, Italy). Eng Geol 2018; 237: 129–39. doi: 10.1016/j.enggeo.2018.02.015


20.
Carmignani L, Cocozza T, Gandin A, Pertusati PC. Lineamenti della geologia dell’Iglesiente-Sulcis. Mem Della Soc Geol Ital 1982; 24: 65–77.


21.
Baiocchi A, Dragoni W, Lotti F, Piacentini SM, Piscopo V. A multi-scale approach in hydraulic characterization of a metamorphic aquifer: what can be inferred about the groundwater abstraction possibilities. Water 2015; 7(9): 4638–56. doi: 10.3390/w7094638


22.
Barca S, Cocozza T, Del Rio M, Demelia PP. Discovery of Lower Ordovician acritarchs in the ‘Postgotlandiano’ sequence of southwestern Sardinia (Italy); age and tectonic implications. Boll Della Soc Geol Ital 1981; 100(3): 377–92.


23.
Celico P, Piscopo V, Berretta G. Influenza di un invaso sulla circolazione idrica sotterranea in rocce scistose. Geol Appl e Idrogeol 1993; 28: 253–61.


24.
Sahoo BK, Mayya YS. Two dimensional diffusion theory of trace gas emission into soil chambers for flux measurements. Agric For Meteorol 2010; 150(9): 1211–24, doi: 10.1016/j.agrformet.2010.05.009


25.
Leonardi F, Bonczyk M, Nuccetelli C, Wysocka M, Michalik B, Ampollini M, et al. A study on natural radioactivity and radon exhalation rate in building materials containing norm residues : preliminary results. Constr Build Mater 2018; 173: 172–9. doi: 10.1016/j.conbuildmat.2018.03.254


26.
Tan Y, Xiao D. Revision for measuring the radon exhalation rate from the medium surface. IEEE Trans Nucl Sci 2011; 58(1 PART 2): 209–13. doi: 10.1109/TNS.2010.2090897


27.
Kemmer G, Keller S. Nonlinear least-squares data fitting in Excel spreadsheets. Nat Protoc 2010; 5(2): 267–81. doi: 10.1038/nprot.2009.182


28.
Ishimori Y, Lange K, Martin P, Mayya YS, Phaneuf M. Measurement and calculation of radon releases from NORM residues. Vienna: Iaea; 2013.


29.
Pereira A, Lamas R, Miranda M, Domingos F, Neves L, Ferreira N, et al. Estimation of the radon production rate in granite rocks and evaluation of the implications for geogenic radon potential maps: a case study in Central Portugal. J Environ Radioact 2017; 166: 270–77. doi: 10.1016/j.jenvrad.2016.08.022


30.
Schön JH. Physical properties of rocks: fundamentals and principles of petrophysics. Leoben: Elsevier; 2015.


31.
Yalcin S, Gurler O, Akar UT, Incirci F, Kaynak G, Gundogdu O. Measurements of radon concentration in drinking water samples from Kastamonu (Turkey). Isotopes Environ Health Stud 2011; 47(4): 438–45. doi: 10.1080/10256016.2011.618270
Published
2023-08-31
How to Cite
Mousavi Aghdam M. (2023). Technical Report Evaluation and study of radon occupational exposure levels in dams: a case study of the Gallery of Medau Zirimilis Dam (Sardinia, Italy). Journal of the European Radon Association, 4. https://doi.org/10.35815/radon.v4.9586
Section
Technical Papers