Application of airborne radiometric surveys for large-scale geogenic radon potential classification

  • Javier Elío Centre for the Environment, Trinity College, Dublin, Ireland; Department of Planning, Aalborg University Copenhagen, Copenhagen, Denmark
  • Quentin Crowley Centre for the Environment, Trinity College, Dublin, Ireland
  • Ray Scanlon Geological Survey, Dublin, Ireland
  • Jim Hodgson Geological Survey, Dublin, Ireland
  • Stephanie Long Environmental Protection Agency of Ireland, Dublin, Ireland
  • Mark Cooper Geological Survey of Northern Ireland, Belfast, Northern Ireland
  • Vincent Gallagher Geological Survey, Dublin, Ireland
Keywords: radon mapping, radon potential, gamma-ray spectrometry, uranium, soil-gas


Background: Indoor radon represents an important health issue to the general population. Therefore, accurate radon risk maps help public authorities to prioritise areas where mitigation actions should be implemented. As the main source of indoor radon is the soil where the building is constructed, maps derived from geogenic factors ([e.g. geogenic radon potential [GRP]) are viewed as valuable tools for radon mapping.

Objectives: A novel indirect method for estimating the GRP at national/regional level is presented and evaluated in this article.

Design: We calculate the radon risk solely based on the radon concentration in the soil and on the subsoil permeability. The soil gas radon concentration was estimated using airborne gamma-ray spectrometry (i.e. equivalent uranium [eU]), assuming a secular equilibrium between eU and radium (226Ra). The subsoil permeability was estimated based on groundwater subsoil permeability and superficial geology (i.e. quaternary geology) by assigning a permeability category to each soil type (i.e. low, moderate or high). Soil gas predictions were compared with in situ radon measurements for representative areas, and the resulting GRP map was validated with independent indoor radon data.

Results: There was good agreement between soil gas radon predictions and in situ measurements, and the resultant GRP map identifies potential radon risk areas. Our model shows that the probability of having an indoor radon concentration higher than the Irish reference level (200 Bq m-3) increases from c. 6% (5.2% – 7.1%) for an area classified as Low risk, to c. 9.7% (9.1% – 10.5%) for Moderate-Low risk areas, c. 14% (13.4% – 15.3%) for Moderate-High risk areas and c. 26% (24.5% – 28.6%) for High risk areas.

Conclusions: The method proposed here is a potential alternative approach for radon mapping when airborne radiometric data (i.e. eU) are available.


Download data is not yet available.


  1. WHO. WHO handbook on indoor radon: a public health perspective. Zeeb H, Shannoun F, eds. Vol. 67. France: World Health Organization; 2009.

  2. Gaskin J, Coyle D, Whyte J, Krewksi D. Global estimate of lung cancer mortality attributable to residential radon. Environ Health Perspect 2018 May 31; 126(5): 1–8. doi: 10.1289/EHP2503

  3. Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, et al. Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. BMJ 2005 Jan 29; 330(7485): 223. doi: 10.1136/bmj.38308.477650.63

  4. Fuente M, Rábago D, Goggins J, Fuente I, Sainz C, Foley M. Radon mitigation by soil depressurisation case study: radon concentration and pressure field extension monitoring in a pilot house in Spain. Sci Total Environ 2019; 695: 133746. doi: 10.1016/j.scitotenv.2019.133746

  5. NRCS (National Radon Control Strategy). Minister for the Environment (Ireland); 2014.

  6. Miles J, Appleton J, Rees D. Indicative atlas of radon in England and Wales (Report HPA-RPD-033). Health Protection Agency and British Geological Survey; 2007, pp. 1–29.

  7. EURATOM. Council directive 2013/59/EURATOM of 5 December. Offic J Eur Union (No L13) 2013.

  8. Bossew P. Radon priority areas – definition, estimation and uncertainty. Nucl Technol Radiat Prot 2018; 33(3): 286–92. doi: 10.2298/NTRP180515011B

  9. Bochicchio F, Venoso G, Antignani S, Carpentieri C. Radon reference levels and priority areas considering optimisation and avertable lung cancers. Radiat Prot Dosimetry 2017; 177(1–2): 87–90. doi: 10.1093/rpd/ncx130

  10. EPA. National radon control strategy, phase two: 2019–2024, report of the National Radon Control Strategy Coordination Group. 2019. Available from:

  11. Elío J, Crowley Q, Scanlon R, Hodgson J, Zgaga L. Estimation of residential radon exposure and definition of Radon Priority Areas based on expected lung cancer incidence. Environ Int. 2018; 114: 69–76. doi: 10.1016/j.envint.2018.02.025

  12. Elío J, Crowley Q, Scanlon R, Hodgson J, Long S. Logistic regression model for detecting radon prone areas in Ireland. Sci Total Environ 2017 Dec; 599–600: 1317–29. doi: 10.1016/j.scitotenv.2017.05.071

  13. Minda M, Tóth G, Horváth I, Barnet I, Hámori K, Tóth E. Indoor radon mapping and its relation to geology in Hungary. Environ Geol 2009; 57(3): 601–9. doi: 10.1007/s00254-008-1329-6

  14. Fennell SG, Mackin GM, Madden JS, Mcgarry AT, Duffy JT, Colgan PA, et al. Radon in dwellings the Irish National Radon Survey (Report RPII-02/1). Radiological Protection Institute of Dublin, Ireland; 2002, 41 p.

  15. Friedmann H. Final results of the Austrian Radon Project. Health Phys 2005 Oct; 89(4): 339–48. doi: 10.1097/01.HP.0000167228.18113.27

  16. Friedmann H, Gröller J. An approach to improve the Austrian Radon Potential Map by Bayesian statistics. J Environ Radioact 2010 Oct; 101(10): 804–8. doi: 10.1016/j.jenvrad.2009.11.008

  17. Watson RJ, Smethurst MA, Ganerød GV, Finne I, Rudjord AL. The use of mapped geology as a predictor of radon potential in Norway. J Environ Radioact 2017 Jan; 166: 341–54. doi: 10.1016/j.jenvrad.2016.05.031

  18. Elío J, Cinelli G, Bossew P, Gutiérrez-Villanueva JL, Tollefsen T, De Cort M, et al. The first version of the Pan-European Indoor Radon Map. Nat. Hazards Earth Syst. Sci., 19, 2019; 2451–2464. doi: 10.5194/nhess-19-2451-2019

  19. Dubois G, Bossew P, Tollefsen T, De Cort M. First steps towards a European atlas of natural radiation: status of the European indoor radon map. J Environ Radioact 2010; 101(10): 786–98. doi: 10.1016/j.jenvrad.2010.03.007

  20. Bossew P. Mapping the geogenic radon potential and estimation of radon prone areas in Germany. Radiat Emerg Med 2015; 4(2): 13–20.

  21. Bossew P. Determination of radon prone areas by optimized binary classification. J Environ Radioact 2014 Mar; 129: 121–32. doi: 10.1016/j.jenvrad.2013.12.015

  22. Alharbi WR. Measurement of radon concentrations in soil and the extent of their impact on the environment from Al-Qassim, Saudi Arabia. Nat Sci 2013; 05(01): 93–8. doi: 10.4236/ns.2013.51015

  23. Gunby JA, Darby SC, Miles JCH, Green BMR, Cox DR. Factors affecting indoor radon concentrations in the United Kingdom. Health Phys 1993; 64(1): 2–12. doi: 10.1097/00004032-199301000-00001

  24. Borgoni R, De Francesco D, De Bartolo D, Tzavidis N. Hierarchical modeling of indoor radon concentration: how much do geology and building factors matter? J Environ Radioact 2014; 138: 227–37. doi: 10.1016/j.jenvrad.2014.08.022

  25. Neznal M, Neznal M, Matolín M, Barnet I, Mikšová J. New method for assessing the radon risk of building sites. Czech Geol Surv Spec Pap; 2004. p. 47.

  26. Elío J, Crowley Q, Scanlon R, Hodgson J, Long S. Rapid radon potential classification using soil-gas radon measurements in the Cooley Peninsula, County Louth, Ireland. Environ Earth Sci 2019; 78(12): 359. doi: 10.1007/s12665-019-8339-4

  27. SGL. Technical report: fixed-wing high-resolution aeromagnetic, gamma-ray spectrometric and frequency-domain electromagnetic survey. Ottawa, Canada: Tellus A7 Block, Republic of Ireland 2019 for Geological Survey, Ireland; 2019.

  28. Adepelumi AA, Ajayi TR, Ako BD, Ojo AO. Radon soil-gas as a geological mapping tool: case study from basement complex of Nigeria. Environ Geol 2005; 48(6): 762–70. doi: 10.1007/s00254-005-0016-0

  29. Cothern R, Smith J. Environmental radon. Cothern CR, Smith EJ, eds. New York: Plenum Press; 1987, 363 p.

  30. Guerra M, Lombardi S. Soil-gas method for tracing neotectonic faults in clay basins: the Pisticci field (Southern Italy). Tectonophysics 2001; 339(3–4): 511–22. doi: 10.1016/S0040-1951(01)00072-5

  31. Schubert M, Freyer K, Treutler HC, Weiß H. Using the soil gas radon as an indicator for ground contamination by non-aqueous phase-liquids. J Soils Sediments 2001; 1(4): 217–22. doi: 10.1007/BF02987728

  32. Elío J, Ortega MF, Nisi B, Mazadiego LF, Vaselli O, Caballero J, et al. CO2 and Rn degassing from the natural analog of Campo de Calatrava (Spain): implications for monitoring of CO2 storage sites. Int J Greenh Gas Control 2015; 32: 1–14. doi: 10.1016/j.ijggc.2014.10.014

  33. Schubert M, Schmidt A, Muller K, Weiss H. Using radon-222 as indicator for the evaluation of the efficiency of groundwater remediation by in situ air sparging. J Environ Radioact 2011; 102(2): 193–9. doi: 10.1016/j.jenvrad.2010.11.012

  34. IAEA. Guidelines for radioelement mapping using gamma ray spectrometry data, IAEA-TECDOC-1363. International Atomic Energy Agency, Vienna, Austria; 2003.

  35. Yu C, Loureiro C, Cheng JJ, Jones LG, Wang YY, Chia YP, et al. Data collection handbook to support modeling impacts of radioactive materialsin soil. Argonne, IL: Environmental Assessment and Information Sciences Division, ArgonneNational Laboratory; 1993.

  36. GSI. Groundwater Resources (Aquifers). Available from: [cited 16 April 2020].

  37. Roberson S, Pellicer X. An all Ireland quaternary map. In: Geophysical research Abstracts. Vienna, Austria: 19th EGU General Assembly, EGU2017, proceedings from the conference held 23–28 April, Vienna, Austria; 2017. p.13365

  38. GSI. Quaternary sediments. Available from: [cited 16 April 2020].

  39. Appleton JD, Daraktchieva Z, Young ME. Geological controls on radon potential in Northern Ireland. Proc Geol Assoc 2015 Jun; 126(3): 328–45. doi: 10.1016/j.pgeola.2014.07.001

  40. Appleton JD, Miles JCH, Young M. Comparison of Northern Ireland radon maps based on indoor radon measurements and geology with maps derived by predictive modelling of airborne radiometric and ground permeability data. Sci Total Environ 2011 Mar 15; 409(8): 1572–83. doi: 10.1016/j.scitotenv.2011.01.023

  41. GSI. All Ireland Quaternary Map 500k (scale 1:500.000). Available from: [cited 18 January 2020].

  42. Neznal M, Neznal M. Analysis of problems and failures in the measurement of soil-gas radon concentration. Radiat Prot Dosimetry 2014 Jul 1; 160(1–3): 214–16. doi: 10.1093/rpd/ncu088

  43. Daraktchieva Z, Appleton JD, Rees DM, Adlam KAM, Myers AH, Hodgson SA, et al. Radon in Northern Ireland: indicative atlas. Public Health England (Report PHE-CRCE-017). London. 2015.

  44. Hodgson J, Carey S, Scanlon R. Developing a new National Radon Risk Map. Geological Survey, Ireland; 2014.

  45. HSE-RPII. Radon gas in Ireland joint position statement by the Radiological Protection Institute of Ireland and the Health Service Executive (HSE) and the Radiological Protection Institute of Ireland (RPII). Radon gas in Ireland joint position statement. Dublin, Ireland; 2010.

  46. Zhuo W, Iida T, Furukawa M. Modeling radon flux density from the earth’s surface. J Nucl Sci Technol 2006; 43(4): 479–82. doi: 10.3327/jnst.43.479

  47. Bossew P. The radon emanation power of building materials, soils and rocks. Appl Radiat Isot 2003; 59(5–6): 389–92. doi: 10.1016/j.apradiso.2003.07.001

  48. Nasuti A, Roberts D, Dumais M-A, Ofstad F, Hyvönen E, Stampolidis A, et al. New high-resolution aeromagnetic and radiometric surveys in Finnmark and North Troms: linking anomaly patterns to bedrock geology and structure. Nor J Geol 2016; 95(3): 217–43. doi: 10.17850/njg95-3-10

  49. Minty B, Franklin R, Milligan P, Richardson M, Wilford J. The radiometric map of Australia. Explor Geophys 2009; 40(4): 325–33. doi: 10.1071/EG09025

  50. Siemon B, Costabe S, Voß W, Meyer U, Deus N, Elbracht J, et al. Airborne and ground geophysical mapping of coastal clays in Eastern Friesland, Germany. Geophysics 2015; 80(3): WB21–34. doi: 10.1190/geo2014-0102.1

  51. Benavente D, Valdés-Abellán J, Pla C, Sanz-Rubio E. Estimation of soil gas permeability for assessing radon risk using Rosetta pedotransfer function based on soil texture and water content. J Environ Radioact 2019; 208–209: 105992. doi: 10.1016/j.jenvrad.2019.105992

How to Cite
Elío J., Crowley Q., Scanlon R., Hodgson J., Long S., Cooper M., & Gallagher V. (2020). Application of airborne radiometric surveys for large-scale geogenic radon potential classification. Journal of the European Radon Association, 1.
Original Research Articles